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A GENERALIZED SAMPLING THEOREM 
FOR LOCALLY COMPACT ABELIAN GROUPS 

ADEL FARIDANI 

ABSTRACT. We present a sampling theorem for locally compact abelian groups. 
The sampling sets are finite unions of cosets of a closed subgroup. This gener- 
alizes the well-known case of nonequidistant but periodic sampling on the real 
line. For nonbandlimited functions an LI -type estimate for the aliasing error is 
given. We discuss the application of the theorem to a class of sampling sets in 
Rs , give a general algorithm for a computer implementation, present a detailed 
description of the implementation for the s-dimensional torus group, and point 
out connections to lattice rules for numerical integration. 

1. INTRODUCTION 

The classical sampling theorem permits reconstruction of a bandlimited func- 
tion from its values on a set of equidistant points on the real line R. It has 
been extended in many directions; see the reviews [4, 14, 15] as well as the 
volumes [24, 25]. An important generalization results from replacing R by an 
arbitrary locally compact abelian group G [18], cf. [14, Story 4]. The sampling 
set is then a coset of a closed subgroup of G. The purpose of this paper is to 
extend this result to sampling sets which are unions of finitely many cosets of 
a closed subgroup H, to provide an error analysis for the aliasing error caused 
by not strictly bandlimited functions, and to discuss the practical application 
of the results. 

Since our sampling sets are invariant under translations by elements of the 
subgroup H, we will call them periodic sampling sets. The first examples oc- 
curred in studies of nonequidistant but periodic sampling on R [16, 19, 32, 
39]. Subsequent generalizations include extensions to Rs [6, 11], and results 
for Rs x [0, 27r)r [8] with applications to computed tomography [7, 8]. Cheung 
and Marks [5, 6, 24] have constructed multidimensional periodic sampling sets 
which permit sampling below the Nyquist density obtained from the classical 
sampling theorem. 

The approach presented here generalizes a method which the author learned 
from H. J. Landau [20, 21], who attributed it to unpublished work of A. 
Beurling. A similar method has been used in Kohlenberg's early paper [19]. 
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A different approach was developed by Butzer and Hinsen [3]. They use 
the results for nonequidistant but periodic sampling as well as other forms of 
nonuniform sampling on R to construct two-dimensional sampling sets. Their 
results are not encompassed by ours, or vice versa, but the applications described 
in [3, pp. 77-82] involve periodic sampling sets. We note that the theory to be 
presented here is not adequate to treat the general case of nonperiodic irregular 
sampling, where the sampling set only needs to meet some density requirements; 
see, e.g., [1, 9, 10, 12, 26] and the references given there. 

In ?2 we introduce the necessary facts about Fourier analysis on locally com- 
pact abelian groups (LCA groups). The reason for choosing this general setting 
is a practical one. On the one hand we obtain results which cover a large 
class of applications. On the other we are able to use powerful theorems like 
Pontryagin's duality theorem and its consequences, which lead to simpler and 
more transparent proofs. We will only need the basic concepts of the theory. 

The main results are proved in ?3. There, we consider the following problem: 
Let f be defined on an LCA group G. Compute the Fourier transform f(P) 
for 4 in a certain compact set K' from knowledge of f on a finite union of 
shifted copies of a subgroup H c G. The sampling theorem then follows by 
taking an inverse Fourier transform. 

Application of the theorem in practice requires the computation of certain 
auxiliary quantities, which is not always a simple matter. We therefore consider 
some special cases where these computations simplify considerably. We derive 
a class of such sampling sets for G = Rs, under the condition that f is concen- 
trated in a rectangular set. This class contains the two-dimensional sampling 
sets discussed in [3, pp. 77-82]. Similar examples are considered in [6]. 

The application of our sampling theorem in the general case requires a com- 
puter implementation. We therefore devote ?4 to this topic. After describing 
a general algorithm, we discuss in detail all the necessary steps for the case 
of H being a finite subgroup of the s-dimensional torus group Ts = Rs/Zs. 
This case is of interest for two reasons: First, as we will see below, there exists 
a relatively simple and fast implementation. Second, even when sampling of 
nonperiodic functions defined on Rs is required, only finitely many samples can 
be processed in practice. This means that one effectively approximates the true 
function by a function with compact support. Functions with compact support, 
however, can be viewed as being defined on Ts by means of a simple change 
of variables. The case of sampling on Ts is therefore both easy to implement 
and of practical importance. 

For K' = {0} the problem considered in ?3 reduces to numerical integration. 
It is therefore not surprising that our approach is related to, and in some aspects 
a generalization of, the class of methods in numerical integration known as 
lattice rules [37]. We encounter another connection to lattice rules in ?4, since 
the finite subgroups of Ts are precisely the abscissa sets of lattice rules. For an 
introduction and a review of recent developments in this area see [29, Chapter 
5], and also [22, 36]. 

2. STANDARD DEFINITIONS AND FACTS 

Let Z, R, C denote the integers, reals, and complex numbers, respectively. 
For x, y E Cs we denote the scalar product by (x, y) = ZJ=s xiyj7. For 
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a, b E R, mod(a, b) is the real number satisfying 0 < mod(a, b) < lbl and 
a - mod(a, b) E bZ. The fractional part of the real number a is given by 
[a] = mod(a, 1). If x e Rs, then [x] is defined as ([XI],..., [Xs])T, XT 
denoting the transpose of x. For X c Rs, [X] denotes the set {[x], x E X}. 
We will usually write the elements of Rs as column vectors. 

Let G denote a locally compact abelian group written additively. For V 
a subset of G, let V and I VI denote the closure of V and the number of 
elements in V, respectively. The indicator function Xv is given by Xv(x) = 1 
for x E V and Xv(x) = 0 otherwise. The character group G consists of the 
continuous homomorphisms of G into the circle group T = R/Z. The value 
of the character 4 E G at the point x E G is written (x, 4). G has a natural 
addition and a natural topology relative to which it is also an LCA group. If 
G is compact, G is discrete. If G is a finite group, then IGI = IGI. The 
Pontryagin duality theorem states that 

G =G. 

Standard examples are: (a) G = Rs, G= Rs; (b) G= Ts = Rs/Zs, G = Zs; 
(c) G = Zs, G = Ts , where (c) is a consequence of (b) and the duality theorem. 
In all three cases we have (x, ) = [Zs= xii] = [(x, 4)]- 

On every LCA group there exists a nonnegative regular measure mG, the 
so-called Haar measure of G, which is not identically zero and translation 
invariant. The Haar measure is uniquely determined up to multiplication by 
a constant. mG(G) is finite if and only if G is compact. In this case we 
normalize mG so that mG(G) = 1. If G is discrete, mG will be a multiple of 
the counting measure. If G is discrete but not compact, we normalize mG so 
that it equals the counting measure, i.e., any set consisting of a single point has 
measure 1. The following useful orthogonality relation is a direct consequence 
of the translation invariance of the Haar integral. For a proof, see, e.g., [13, 
?23.19] or [35, p. 10]. 

Lemma 2.1. If G is compact and its Haar measure is normalized so that mG(G) 
= 1, then 

je27ri(x ) dmG(x) = { 1 = 0, 
0 ~ 540. 

Lp(G) denotes the space of all Borel functions on G such that Ilf Ip = 

(fG If(x)IP dmG(x)) 1P is finite. CC(G) is the space of all continuous functions 
on G with compact support. The Fourier transform of a function f E LI (G) 
is the continuous function f on G defined by 

f(P) = jf(x)e 2Xt(x dmG(x). 

G~~~~ We will always normalize the Haar measure mG^ such that the following holds. 

Theorem 2.2 (Fourier inversion formula). If f E L1 (G) is continuous and f E 
L1(G), then 

(1) f(x) = J (4)e27i(x X) dm,() = f (-x). 
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The Fourier transform can be extended to a linear isomorphism of L2(G) 
onto L2 (G) by means of the Plancherel theorem (cf. [13, ?31.18]). The con- 
volution f * g of two functions f, g E L2(G) is given by (f * g)(x) = 

fGf(y)g(x -y)dmG(y). If f * g E L2(G), we have (f * g)-(i) = P() 9) 
The inverse formula 

(2) (f * g)(x) = Af 9' g)e' dm-(,) 

holds for all f, g E L2(G) and is equivalent to the Parseval Identity. 
Let H be a closed subgroup of an LCA group G. The annihilator of H is 

the set H' c G given by 

H' = {I E G: (y, i) = 0 for ally e H}. 

H' is a closed subgroup of G and is isomorphically homeomorphic to the 
character group of G/H, i.e., 

H' = (G/H)-. 

Furthermore, we have that 

(H')' = H and H=G/H' 

The following technical lemma, which we will need later on, is a consequence 
of the identification of H' with (G/H)^. 

Lemma 2.3. Let G be an LCA group, H a closed subgroup of G such that G/H 
is compact, and K a compact subset of G. Then IH' n KI is finite. 
Proof. Since G/H is compact, the topology of (G/H)^ = H' is discrete; i.e., 
all sets {I} whose only element is the point i E H' are open. Since the 
topology on H' is the relative topology induced in H' by G, it follows that 
for each n E H' there is an open set U. c G such that H' n U. = 

Therefore, the open set G\H' and the sets U. for n E H' n K provide an 
open covering of K. Since K is compact, there is a finite subcovering C. We 
obtain 

IH'ln KI= U H' n U= U {U} < oo 
U,1EC UI1EC 

For f E L1 (G) define the function RHf: G/H - C by 

RHf(x+H) = ' f(x+y)dmH(y)- 

Note that the integral on the right-hand side does not change when x is replaced 
by x+h with h E H, so RHf is indeed a function of the coset x + H. Accord- 
ing to Theorem 28.54 in [13], RHf belongs to L1(G/H). If f E CC(G), then 
RHf E Cc(G/H); see [13, Theorem 15.21]. We normalize the Haar measures 
on H, G/H, and H' so that 

( RHf(x + H) dmG/H(X + H) 

- JGHJH(x + Y) dMH(y) dMGIH(X = j f dmGM 
G/HHG 
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and the Fourier inversion formula holds for the Fourier transform on G/H. 
Multiplying f(x) in (3) by e-2Xi(x, X) with q E H' gives the following relation 
between the Fourier transforms of f and RHf: 

(4) (RH f f^t)=t(t1) q E H1 

Note that on the left-hand side the Fourier transform is taken with respect to 
G/H, while it is taken with respect to G on the right-hand side. 

The Fourier inversion formula for RHf gives rise to the Poisson summation 
formula (cf. [13, ?31.46(e)]): 

Theorem 2.4. Suppose that f E L1 (G), that everyfunction y -* f(x+y) belongs 
to LI(H), that RHf is a continuous function on G/H, and that (RHf)^ E 

LI(H'). Then 

(5) ' f(x + y) dmH(y) = ' f(Qe27ti(x ") dmHlr 

Proof. Using (4), we see that (5) can be written as 

RHf(x + H) = J (RHf)'(q)e dmHH (q). 

Hence, (5) is established by applying Theorem 2.2 with f, G, and G replaced 
by RHf, G/H, and H', respectively. El 

If Theorem 2.4 can be applied to the function x --) f(x)e-2i(x4), E G,, 
the following version of the Poisson summation formula results: 

(6) Jf(x + y)e-27i(x+Y ? dmH(y) = J f( + e27i(x ) dmH 1 (ii) 

Let us consider some examples. (i) The Haar measure on G = Rs as well as 
on G = Rs is the Lebesgue measure, and the Fourier transform is given by 

1 
= f(x)e-27i(x O) dx. 

Let 0 E Rs with (6, 0) = 1. The hyperplane H = {x E Rs, (x, 0) = O} is a 
closed subgroup of Rs . We see that H' = {TO, T E R}, and because of x+H = 
(x, 6)6+H we have Rs/H = {tO+H, t E R}. RHf(tO+H) = f(x )=t f(x) dx 
is called the Radon transform of f . Writing Re f(t) for RHf(tO + H), we see 
that (4) reads 

f(TO) = (RH f )"(T) = j RHf(tO + H)e-27i(tO 'zo) dt 

= j Rof(t)e-27irt dt = (R6f) )(T). 

This is the well-known "projection-slice" theorem. In computerized tomography 
it is the basis of some standard algorithms for reconstructing f from measure- 
ments of R6f [27]. 

(ii) Let G be the s-dimensional torus group Ts = (R/Z)s. We choose the 
s-dimensional hypercube [0, 1)s with addition modulo 1 in each component 
as a model for Ts. The Haar measure mG is the restriction of the Lebesgue 
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measure on Rs to [0, 1)s, and m- is the counting measure. For f E Li (G) 
we have 

= 40) = f (x)e-21r(x*,) dx. 
[O , 1)5 

Since 4 E Zs, and because of 

= 44 e-27ri(x,X ) = e-27ri Ek=I kX 

f(4) is just the usual Fourier coefficient of f . Hence, the condition f E L1 (G) 
means that f has an absolutely convergent Fourier series. 

Let H be a finite subgroup of Ts. It can be shown (see Proposition 4.2 
below) that there exists an s x s matrix W such that W- I is an integer matrix 
and, as a set, H = WZs n [0, 1)s = [WZs] . Hence, H represents an integration 
lattice in the sense of Sloan and Kachoyan [37]. The annihilator H' is given by 
the "reciprocal lattice" W-TZS, where W-T denotes the transpose of W-1 . 
The Haar measure on H is 1/ IHI times the counting measure. mH? is equal 
to the counting measure. The integral over H, 

JH dMH(y) = p E f(Y) 

is now a so-called lattice rule for numerical integration, which gives an approx- 
imation for fG f(x) dmG(x) = J[0, 1)s f(x) dx. The error analysis is furnished 
by the Poisson summation formula (5), which reads as follows: Let f be con- 
tinuous and have an absolutely convergent Fourier series. Then 

1I x 

f (x + y) = : f (q)e27i(x, ) 
HIYEH E1 

Letting x = 0 and remembering that f(0) = f[0, )s f(x) dx, we obtain the 

formula 

(7) HZ1 f(y) - | f((x) dx= Z f(r1), 
yEH t)eH', q5#0 

which is the basis of analyzing the integration error; see [37]. For example, 
assume that f(0) = 0 outside a compact set K c Zs. If the lattice H is 
chosen such that 

(8) H'nKC{0}, 

the right-hand side of (7) will vanish and the numerical integration is exact. 
Special choices of K can serve as criteria for constructing lattice rules. For 
details, see, e.g., [22] and the references given there. 

3. SAMPLING THEOREMS 

We will assume throughout this section that H is a closed subgroup of an 
LCA group G, and that G/H is compact. This implies that H' = (G/H)^ 
is discrete. We assume mG to be given and normalize the Haar measures on 
H and G/H so that MG/H(G!H) = 1 and (3) holds. The Fourier inversion 
formula then requires mH? to be equal to the counting measure on H' . Fur- 
thermore, we assume that f E L1 (G) is continuous, every function y - * f (x+y) 
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belongs to L1 (H), and f(4) = 0 outside a compact set K c G. It follows that 
the Poisson summation formula (6) holds for all 4 E G. 

In the following we study the problem of computing f(4) for 4 in a com- 
pact set K' C K from the values of f on finitely many cosets xn + H. The 
sampling theorem then follows from an inverse Fourier transform; see Theorem 
3.5 below. We first derive a result for the case K' = {0}, i.e., for approximating 
fG fdmG from finitely many values of RHf(X + H). Equation (3) suggests the 
following approach: 

J f(x) dmG(x) = J RHf(x + H) dmG/H(X + H) 
G G/~~~H 

N-1 
ZI InRHf(xn+ H), 
n=O 

with coefficients fn E C. This amounts to performing a numerical integration 
of RHf over G/H. We will use our a priori information about f to develop 
criteria on how to choose the /%n and xn . The simplest case is to use RH(O + 
H) = fH f(y) dmH(y) as our approximation. The example at the end of the 
previous section suggests calling this a generalized lattice rule. (A different 
generalization for compact but not necessarily abelian groups has been given by 
Niederreiter [30].) The Poisson summation formula yields the general form of 
equation (7): 

f (y) dMH(Y) -6 f(x) dMG(X) f (r1) 
H EH', qC60 

Note that the Haar integral over H' is a series since H' is discrete. Again the 
lattice rule will be exact if the condition (8), i.e., H' n K C {0}, is satisfied. 

Now assume that (8) does not hold. Since H' n KI is finite because of 
Lemma 2.3, there is an integer m such that 

(H' n K)\{0} = 11,. .., 1rm- }I 

Using (5) with x = xn yields 

N-1 N-1 N-1 

Z flnRHf(xn + H) - : f3nf(0) = Z f('i) E fine2 7(xn 

(9) n=O n=O teH', q:5 n=O 

mr1 N-1 

Ej f(ni) E flne27ri(xn,,, ,) 
j=i n=O 

Now we try to choose points xn and weights /n such that the right-hand side 
vanishes and n=oi ftn = 1 . We obtain 

Theorem 3.1. Let (H\{0}) n K = {In,. ..nm-l}. If 
N-1 

f/3n = 1, 

(10) N-n=O 

E Ane27i(x=,O,) = O j= 1, ... m-1, 

n=O 



314 ADEL FARIDANI 

then 
N-1 

Z flfnRHf(Xn + H) = I f(x) dmG(x). 
n=OG 

Proof. Insert (10) into (9). El 

The question arises under what conditions the system of equations (10) ad- 
mits a solution. An obvious necessary and sufficient condition is that the first 
row of the system matrix must not be an element of the subspace of CN spanned 
by the other rows. The next two propositions give a necessary condition and 
a sufficient condition, respectively, in terms of the xn and iy . Let U denote 
the smallest subgroup of G/H containing {xo + H, . .. , XN- 1 + H} and let us 
write Mo for Pul, ... ., C-1}. 

Proposition 3.2. If (10) admits a solution, then Mo nl U1= 0. 

Proof. Assume there is 1 < k < m - I with qk E Mo n Ul . Then (xn, '1k) = 0 
for n = 0, ... ,N- 1, and the equation for j = k reads 

N-1 N-1 

ZE I ne21i(xn,,1k) 
= 

N - 
n=O n=O 

which contradicts the first equation of (10). El 

If the (xn + H) form a subgroup of G/H, the necessary condition of the 
previous proposition is also sufficient: 

Proposition 3.3. If U = {xo + H, ... ., XN_1 + H} and Mo n U' -0, then the 
choice /3n = 1/N, n = 0, ... , N - 1, gives a solution of (10). 

Proof. U is a discrete, compact group; hence the Haar measure mu equals 
1/N times the counting measure. We have U = (G/H)^/U' = H'/U', 
and the value of the character i + Ul E U at the point xn + H is given 
by (xn + H, q + U') = (xn, r). The assertion now follows from applying 
Lemma 2.1 with G = U for = and =i + U,j= 1,...,m-1, 
respectively. El 

We will now derive extensions of Theorem 3.1. If f (x) satisfies our general 

assumptions, so does g(x) = f(x)e-2 i(x (). We see that 0(4') = 0 for 4' ? 
((-E) + K). Applying Theorem 3.1 to g gives 

Proposition 3.4. For 4 E G let Me be the finite set 

(H'\0o}) n (K - 4) = {l, .. .', ?lm-I } - 

If xn + H E G/H, fin E C satisfy (10), then 

N-1 

(11l) f'4' = ' fn J f(xn + y)e-27i(xn+Yy ) dmH(y) 
n=O 

Our next goal is to use Proposition 3.4 to compute f(4) for 4 in a compact 

set K' C K with fixed points xn independent of 4. This is more complicated 

because the coefficients /in depend on Me and therefore on 4. However, for 

4 E K', Me = (H'\{0})n(K-4) is contained in H' n(K-K') , which is a finite 
set since K-K' is compact. Hence, as 4 runs through K', Me will assume only 
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finitely many different values M1, ... , ML. The relation 4 _' X ME = M:, 
is an equivalence relation on K' induced by the subgroup H. The equivalence 
classes are K, = {4 E K': M= Mi}, 1 = 1, ..., L. The sets K1 are mutually 
disjoint and we have K' = ULJ K1 . Each K1 consists of the points 4 for which 
4+ rnEK if 7EMIU{O}, and + + K if IEHL\(MIU1{O}). 
Theorem 3.5. Assume that f E L1 (G) is continuous, everyfunction y - + f(x+y) 
belongs to L1 (H), and that f vanishes outside a compact set K c G. Let Ml = 

as . r.s },-I( = 1 ..., L, be the values assumed by (H'\{O}) n (K-4) 
as , runs through the compact set K' C K. Let XK, be the indicator function 
of K, = {f E K': M, = MI}. Assume Xo +H, xN-l + HE G/H are such 
that for 1 = 1, ... , L the systems of equations 

N-1 

Zafi)= 1, 

(12) n=O 
N-1 

flA(l)e 27i(xn,, ) , Ml Oi I 

n=O 

admit solutions fni), n = 0, ..., N - 1. Let F E L2(G) with supp(F) _ K', 
and define 

N-1 L 
.) r~~~~~-7 (13) (Sf) (4) = F() j fln ('XK() jf(xn + y)e2Xi(xn+Y4) dmH(y) 

n=O 1=1 

and Sf(x) = fa(Sf )^()e2ni(x 0 dm (4) . Then 

(14) F(l)f(4) = (Sf>)^(4) for E G 

and 

N-1 

(15) (F f)(x) = (Sf)(x) = Z] f(xn +y)kn(x -xxn-y)dmH(y) 
n=OH 

with 

L 

(16) kn (z) = > a(F * XKn)l(Z) 
1=1 

Proof. If 4 E G\K', both sides of (14) are zero. If 4 E K', then s E K1o for 

some lo E {1, .I. , L}. Hence ELzI fl i,)PXKI) = filO), and applying Proposi- 

tion 3.4 with M, = Mlo, m = mi1o, and fn = fin,(/) yields (14). Since f is 
bounded with compact support, we have f E L2(G). Taking an inverse Fourier 
transform and using (2) yields (15). El 

Theorem 3.5 permits us to obtain filtered versions of f from knowledge of 
f on cosets xn + H, n = 0, ..., N - 1. Of particular interest is the case 
K' = K, F = XK . Then we can compute the function f itself, since (15) reads 

N-1 

(17) f(x) = J f(xn + y)kn(x - Xn- Y) dmH(Y) 
n=O - 
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with (16) simplifying to 

L 

(18) kn(z) = Z IX%KI(-Z) - 
1=1 

The case L = ml = 1 yields the classical sampling theorem [18, 33]. This 
requires that the sets K + C, I E H', be mutually disjoint. 

It may happen that some of the sets K1 have measure zero. In this case 
XK, (z) = 0 for all z E G; hence these sets do not contribute to the sampling 
series Sf in (15). They may therefore be ignored, and the corresponding co- 
efficients iB(l) need not be computed. 

The next theorem gives an estimate for the error committed when f (E) does 
not vanish outside K. It is the main result of this section. 

Theorem 3.6. Assume that the hypothesis of Theorem 3.5 holds except the con- 
dition that f vanishes outside K. Assume instead that f E L1 (G) and that the 
Poisson formula (6) holds for all x e {xo, ... , XN- 1 } and almost all , E K'. 
Then 

(19) I(Sf )(x) - (F * f)(x)I < I jFlly If(4)I dm m(4) 
G\KG 

for all x E G, where 

N-1\ 

ya = m (l XL If n)I) m l=max.,L. 

Proof. By (2) it is clear that I(Sf )(x) - (F * f )(x)I < II(SfY) - Ef I I. Since 
F(4) vanishes outside K', we obtain from (13) and (6) that 

II(Sf)^ -Ff 

JK (4 EE n%I4 f(c, + 1)2iX 
') - f(,)) dm$) 

N-1 L 
For E K' we have ZNi Z L fl (I)XK(~ I 1; hence the term with tq = 0 in 
the summation is equal to f(~) . This gives 

II(Sf )~ - Ii l 1 FQ4) > E An XK (4) Z fQ( + G1)e27i(xn ? m 
n=O 1=1 ?IEHOL 

where we have written HO-L for H'\{0}. Let PI (i) = Z:N-l f(l)e27ri(xn,? ) * We 
have Pl(0) = 1, PI(iq) = 0 for t7 E Ml, and SUpAEH? IP(t)I ? Zn= nP I. 
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Hence, 

II (Sf r - FfII 
L 

=ZAX,%KI@x)FK ) fQ4 + ?7)P'(?7) dm-(c) 
K' ?I E HOL \Ml 

(20) _ E' / Z IF(4)f( + )PI'(t)1 dm-($) 
1=I ?I E GHO-L\Ml 

N-1 \L 

< ||F|| 0 t rnO 1=1 ?IEHo-L\M/ 7 

Since the sets K1 are disjoint and (K1 + tq) n K = 0 for t7 E Ho -\M1, it follows 
that 

L L 

z E J f~If(4dm(4)?< Z E If(4)Id m-(4) 
(21) 1=1 ?JEH0-L\Ml '+6 EHO-L 1l(, 

= z JK'+i)\K) dmG^*4). 
?1EH ff+)\ 

It remains to clarify how many of the translates K' + q may contain a given 
point . If 4 E K'+ t, then there is lo such that 4 - 7 E Klo . If also 4 E K'+ 17', 
then (-7) + ((7 - ') = 4 -' E K' c K, which implies that 7 - 7' E M10 u {} . 
Since Mlo u {O} has only m1o < mff elements, there are at most mi different t 
with 4 E K' + tq. Therefore, 

(22) E I()dm-(4) < m I()dm-(4). 1 (Kl+r)\K GG\KG 

The proof is now completed by combining (20), (21), and (22). O 

For the case K' = K, F = XK, we obtain 

Corollary 3.7. Under the hypothesis of Theorem 3.6 we have for K' = K and 
F = XK 

(23) I(Sf)(x) - f(x)I < (1 + y I\ If(4)I dm^(4) 
G\KG 

Proof. We have I(Sf )(x)-f(x)l < I(Sf)(x)-(F*f)(x)I+I(F*f)(x)-f(x)l. 
The assertion now follows from (19) and 

I(F*f)(x)-f(x)I < IFFf-f il = IIXKf-fiIl =lllf(4)Idm() 

We proceed by giving examples and discussing some special cases, where the 
application of the theorem is relatively simple. In order to clarify the basic 
concepts of the theory, we begin by working out a one-dimensional example, 
which leads to the well-known case of nonuniform but periodic sampling on the 
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realline. Let G=R, H=Z, H' =Z, K=K'=[-,1],and feLI(R) 
be such that the hypothesis of Theorem 3.6 holds. We find that for 4 E K' 

M {1},-1< <0 

I{-1}, O< < 1, 

(H'\f }) n (K -4 f {1, 215 =- 1 

{-1,1}, 0 5 

f -2, -1},5 1. 

It follows that K1, K2 are the open intervals (-1, 0) and (O, 1), respectively. 
The other sets, namely, K3 = {-1}, K4 = {O}, and K5 = {1}, have measure 
zero and may be ignored. Hence, we have L = 2. Since Ml = {1 } and 
M2= {-1}, it follows that mI = = m= 2, and that 7() = 1 and 

(2) = -1 . In general we have to choose N > mii in order for the systems (12) 
to be solvable. Letting N = m = 2, we obtain shifts xo, xl E R and choose 
without loss of generality xo = 0. For / = 1, 2 the equations (12) read 

g4l) + 7(l) = 1, 

j7(l) + fi(l)e27i(xi,q(1)) = o 

with (xl, (1)) = [(-1)'-1xl]. This yields the coefficients 

l) = ( 1 - e2zi(x1, )) )- l=2 + i(- 1 )l+1 2-2csin(27rxl) 
2 2 - 2 cos(27rxl)' 

ig ) =f<BZ), 1= 1, 2. 

Furthermore, we obtain XK,(-Z) = exp((-1)1iriz) sin(7rz)/(7rz) . Together with 
the choice F = XK this yields for n = 0, 1 the functions 

kn(z) = sin(7rz) ((,Z) + (-I)n+l 1sin(27x ) - sin(7rz)) 

The sampling series now reads 

(Sf )(x) = E E f(xn + j)kn(x-Xn -j) - 
n=O jEZ 

Similar examples have been discussed in [19, 39, 16, 8]. 
The quantity y in (19) is a measure for the stability of the reconstruction 

of f from its sampled values. In the example above we see that If3(l)I oc, 
and therefore y -+ ox if xi approaches an integer. This has to be expected, 
since for x1 an integer, the two shifted copies of H would coincide, and we 
would lose necessary information. For x1 ? Z the reconstruction is possible, 
but becomes increasingly unstable if x1 approaches an integer. 

We have already investigated the solvability of the systems (12) in the case 
of K' = {O} . Now we turn to the important case K' = K. Let us write Ml for 
Ml U {0} and observe that the equations (12) may be written in the equivalent 
form 

N-1 
(24) E ?l)e2zi(xn, =(U), E Ml, 

n=O 
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with 3(?7) = 1 for ?7 = 0, and 3(?7) = 0 otherwise. If K' = K, we have that 
(K1 + i1) c K' if ? E Ml, and (K1 + ?1) n K = for ? E HL\Ml. It follows 
that for each _ E Ml there must be an 1' E {, ... , L} such that K1 =K1 + ?, 
and M1I = Ml - ?1. We may thus define an equivalence relation on { 1, ... , L} 
by letting / _ /' if and only if there is ?7 E MI such that K11 = K1 + ? . Clearly, 
the equivalence class of any / consists of IMII = ml elements. The following 
proposition is a consequence of the fact that the equations (12) for 1, 1' with 
/ _ 1' are closely related. 

Proposition 3.8. Let A(l), / = 1, ..., L, denote the matrices of the linear 
systems (12). If K' = K and all L systems (12) admit a solution, then 
rank(A (') = ml, 1 ... , L, and therefore N > max,= 1 L, ml . 

Proof. Fix 1 E {1, ...,L}, and let M = {O= 1) 1 . . The 
system (12) reads 

N-1 

(25) ZAJn)fi() = Jjo 0 ml-1 
n=O 

where AYn) = e2 i(xn ) are the entries of the ml x N matrix A(M), and 3jk iS in 
the Kronecker delta. Since K' = K, there are 1l, ...l, 1 such that Klk = 

K1 + r'(), Mlk =Ml RI- qT). The equations (12), written in the form (24), read 
for l= lk, k =1,..., ml - 1, as follows: 

(III )i~ e2'ti'xn" i -t1 3( Q(j)- ,;)) = 3jk j j=O,..*.*,m -1I 
n=O 

With fi,1k) = f3(lk)e-27u(Xn 1kl) this may be written as 
N-i 

1 (26) A ( ) 3k ()) = jk, j = ? .. ml - 1. 

n=O 

Note that the right-hand sides of the systems (25), (26) are the canonical unit 
vectors in Cmi. Since all these systems are solvable, we have that A(l)CN - 
Ctm. ol 

In general, the functions k (z) defined in (16) are quite complicated. We 
consider two special cases where they simplify considerably. The first one oc- 
curs when the coefficients fi,?/) are independent of 1 and leads to the sampling 
theorem of Gaarder [1 1]. The following corollary is a generalization. 

Corollary 3.9. Let the function f be as in Theorem 3.6 and let tli, ... , tam-l 

denote the elements of the finite set (H'\{0}) n (K - K) . If there are Xn + H E 
G/H, n = 0, . .. , N - 1, such that the system of equations (10) has a solution 
(/30i-, /3.f~N-1) E CN, then the estimate (23) holds with 

N-1 

(Sf)(x) = , fn J f(xj +Y)kK(Xn+y-x)dmH(y) 

n=OH 

and y = m righ-hn 1Ife l - 

Proof. Let K' = K. Since all sets Ml are subsets of (H'\{0}) n (K- K), 
it follows that ici = max1 <l<L ml i m and that the systems of equations (12) 
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have the solution ,l)=fi8, 1= l,..., L, n = 0, ...,N- . Now we apply 
Corollary 3.7 and note that (16) simplifies to kn(z) = fin%K(-z) because the 
3n/) do not depend on 1. 0 

Note that in this case the sets K1 and Ml need not be determined. Gaarder 
used the following approach to construct suitable sampling sets. Let U = {xo + 
H, ... , XN_-1 + H} be a finite subgroup of G/H such that the system (10) 
has a solution (,B0, ..., f-BN' -1) where some of the fin are zero. Hence, the 
corresponding cosets xn + H can be dropped and the union of the remaining 
cosets is a suitable sampling set. 

The second case allowing for simplification occurs when the sets K1 are 
translates of some set Ko. 

Corollary 3.10. Assume the hypothesis of Theorem 3.6 holds with K' = K and 
F = XK, and that in addition there is a set Ko c G such that all sets K1 of 
positive measure may be written as K1 = Ko + rl, rl E G. Then the estimate 
(23) holds with (Sf )(x) given by (15) and 

kn (z) = %Ko(-Z) Z fi(l)e27ci(ri, z) 
1=1 

Proof. Ignoring sets of measure zero, we have XK,(4) = XKO(4 - rl); hence 
%K,(-z) = %Ko(-Z) exp(27ri(r1, z)) . Inserting this into (18) and applying Corol- 
lary 3.7 yield the desired result. al 

The main difficulty in applying this result to a concrete case is the determi- 
nation of the quantities Ko, L, r1, nml, and Ml, / = 1, ..., L. After this is 
accomplished, the coefficients I3(l) may be found from (12). In the following 
example we describe a class of sampling sets in Rs where Corollary 3.10 may 
be applied and the above quantities can easily be computed. This is possible 
because K is assumed to be a rectangle and the subgroup H is chosen appro- 
priately. 

Example 3.11. Let G = Rs, and 

K = K' = [-di/2, d1/2] x x [-d5/2, d5/2] 

with d1, ... , ds > 0. Let PI, ... , Ps be positive integers, W the diagonal 
matrix with entries Wii = Pi/di, i = 1, ... , s, and H = WZs . Define the sets 
J c Zs and Ko c Rs by 

J={kEZs:O<kj<Pj-l1, i=l1, ...,s} , 

K~di 
di 

di\ 
ds ds ds 

Ko = 2 2 + /I x x (2_5 + PS 

Then L = Hl-s= Pi = IJI, all ml are equal to mf = L, and the sets K1 and 
Ml = Ml U {0} are given by 

K1 = Ko + r1, 

Ml= W-'J- rl with r =W-lk(l), 

where k(l) = (k1, ... , ks)T is the uniquely determined element of J such that 
/ = 1 + k1 + P1k2 + P1P2k3 + * * + P1 Ps-,ks . The shifts xn may be chosen 
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from the set W[0, 1)5 . If the systems (12) admit a solution, the sampling series 
is given by Corollary 3.10. 
Proof. We have H' = W-TZS = W-1ZS. Consider the center point of Ko, 
Xo = (-d,/2 + di/2Pi -... , -d/2 + dsl/2Ps)T E K. For 7 E H' we find that 
4o + ? E K if and only if ? E W-IJ, i.e., Mo M 0o U {0} = W-lJ. An 
elementary computation shows that the set K1 = {E E K, Me = MXo } equals 
Ko. Hence, K1 = Ko, M1 = W-1J, and ml = IM = IJI . According to the 
discussion preceding Proposition 3.8 we obtain further sets K, by setting K, = 
K1 + W-lk(l), = 2, ...,IJI, with Ml=M1-W-lk(l). Since K\Uljll K 
has measure zero, all other sets K, must have measure zero. El 

The class of sampling sets described by Example 3.11 is quite large. For 
s = 1, P1 = d, = 2, we obtain the one-dimensional example discussed above. 
For two-dimensional examples we refer the reader to pp. 77-82 of the paper by 
Butzer and Hinsen [3]. Their approach is different from ours, but the sampling 
sets of all four applications given there fall under the description of Example 
3.11. For example, let s = 2, di = 1, d2 = 1/2, P1 = 4, P2 = 2. This gives 
K =[-1/2,1/2] x [-1/4,1/4], WI I = W22 = 4; hence H =4Z2, HI = I Z2, 
and L = m = m= P1P2 = 8. The shifts x, n = 0,..., N- 1, may be 
chosen from the set [0, 4)2, and we need N > 8 for the systems (12) to be 
solvable. The sampling set investigated in [3, p. 81] is now obtained by choosing 
xn, n = 0, ..., 7, as the column vectors of the matrix 

4a a b b 4-a 4-a 4-b 4-b) 
tb 4-b a 4-a b 4 -b a 4 -aJ 

with a = v,/2/(1 + V/) and b = v'a. While this choice gives a very aesthetic 
sampling set, it is not more difficult to apply Corollary 3.10 to a different choice 
of the xn . The sampling sets of Example 3.1 1 can also be obtained using the 
results of [8], as well as with the approach of Cheung [6]. 

4. IMPLEMENTATION 

For certain applications, e.g., computerized tomography [7, 8, 27, 28, 34], it is 
important to take advantage of the particular shape of the set K in order to find 
efficient sampling sets. If K is not a rectangle, finding the sets K,, Ml may be 
considerably more complicated than in Example 3.11. It is therefore desirable 
to develop a suitable computer implementation which reduces the demands on 
the user to the absolute minimum. In this section we will discuss one such 
method. After formulating the general algorithm, we give a detailed discussion 
of the case G = Ts. It is hoped that this will assist the reader in implementing 
the algorithm without too much difficulty. 

Our approach is to compute (Sf )-(4) according to ( 13) for 4 in a finite set 
K" C K'. The function (Sf ) (x) can then be found by inverting the Fourier 
transform numerically, which can usually be done by FFT techniques. In gen- 
eral, this will cause an additional discretization error, but this error can be 
avoided if the group G is discrete, as in the case of G = Ts. The advantage of 
this approach is that it leads to fast algorithms, is relatively easy to implement, 
and does not require the user to perform tedious computations. 

(Sf )^ may be computed as follows. For each 4 E K" we have to determine 
the index / for which 4 E K,, and to evaluate fH f(xn+y)e-27i(xn+y () dmH(y) . 
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Let H c G consist of exactly one representative of each coset 4+H' E G/H' - 

H. For each 4 E K" there is exactly one 4o E H such that 4 E 4O + H'. For 
y E H we have (y, 4) = (y, o0). Let gn: H -+ C be given by g,(y) = 

f(x, + y), y E H. Then 

JHf(xn +y)e 2i(xn+Y4) dmH(y) 

= e-27i(xn,,) gn(y)e-27i(y, o) dmH(Y) 

= e-27i(xn n(g + H1 ), 

where the Fourier transform is taken with respect to H. We obtain the fol- 
lowing general algorithm. Let A denote a suitable array used for computing 
(Sf ) E(4), 4 E K", and assume the coefficients jA) are already computed. 

Algorithm 4.1 

For all 4 E K" set A(4) = 0; 
Forn=O, ..., N- I do; 

Compute 4n (4o + H') for all 4o E H; 
For all 4 E K" do; 

Find 1 < 1 < L and 4o E H such that 4 E K1 and 4 E O + H'; 

Add fi(l)e-27i(xn ')kn(iO + H') to the current value of A(4); 

end; 
end; 

For all 4 E K" multiply A(4) by F(l); 

We will now give a detailed description of the implementation of Algorithm 
4.1 in the case of H being a finite subgroup of the s-dimensional torus group 
G = Ts. Since G = Zs is discrete, K is a finite set. This is an optimal situation 
for using Algorithm 4.1 because we can choose K" = K' and the inverse Fourier 
transform can be carried out without discretization errors. In order to be able to 
implement the algorithm for given H, K, K', and xn, n = 0, . .. , N- 1, we 
face the following tasks: Finding a suitable mathematical representation of H; 
determining the set H; finding the sets Ml, / = 1, . .. , L, and the coefficients 
fn(l); for 4 E K" finding / with E E K1 and 4o E H with 4 E 40 + H' 
computing gn (4O + H') for 4o E H. 

We will discuss each of these steps and begin with giving a representation 
of H suitable for our purpose. The finite subgroups of Ts are precisely the 
abscissa sets of integration lattices as defined in [37], which have been studied in 
considerable detail; see, e.g., [29, 22, 23, 38] and the references given there. In 
the next proposition we collect the needed results from this theory. In choosing 
the Hermite normal form for the generating matrix of H', we are following 
an approach taken in [23]. 

Proposition 4.2. Let H be a finite subgroup of the s-dimensional torus group 
Ts. Then there exists a unique nonsingular lower triangular s x s matrix W 
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such that 
(i) as a set, H = [WZs], and H' = W-TZs; 
(ii) IHI = I det WI - l; 
(iii) the matrix B = W-T has Hermite normal form; i.e., B is an upper 

triangular integer matrix satisfying 

(27) Bi > ?, i= , 
...,j 

s, 

1 -Bii < Bij < ?, i < j < s. 

Proof. See [29, pp. 125-126, 131-132] and [31, Theorems II.2, II.3]. a 

In practice, the subgroup H is specified by choosing a generator matrix W 
such that H = [WZs]. If W-T is not in Hermite normal form, one can use 
one of the algorithms published in [2, 17] to obtain the uniquely determined 
matrix W of Proposition 4.2. The description of H provided by Proposition 
4.2 is not yet fully satisfactory, since for each y E H there exist infinitely many 
z E Zs such that y = [Wz]. In the following proposition we remove this 
ambiguity and obtain at the same time a suitable set H consisting of exactly 
one representative of each coset in G/H'. The proof is given at the end of 
this section. 

Proposition 4.3. Let H be a finite subgroup of G = Ts and W its generator 
matrix as given by Proposition 4.2. Let H be the set 

H= {z fE T : ? < Zi < Ni - 1,5 i = 1,5 ..., s}, 

where the N, are the positive integers Ni = l/JWii, i = 1, ... , n. Then the 
mappings z - [Wz] and z -+ z + H' are bijections from H onto H and 
G/H' = H, respectively. 

This means that we have H= [WH], and H={z+ H, z 4E H}, and that 
we can use H as a convenient index set to label both the elements of H and of 
H. Using Lemma 4.7 below, one can show that the set {x E Rs: 0 < xi < Wii J 
i = 1, ... , s} contains exactly one representative of each coset x + H E G/H . 
Hence, the shifts x, may be chosen from this set. 

With regard to finding the sets Ml, we observe that G is discrete and K' is 
therefore a finite set. We may therefore assume that K" = K'. The sets Ml 
can be determined by inspection. The same is true for finding for each 4 E K" 
the index 1 such that Me = Ml, i.e., 4 E K1. In one or two dimensions, 
the sets Ml and K1 can often be found by simply drawing the translated sets 
K + ?7, t? E H'; see, e.g., [8, p. 74]. In higher dimensions, however, the task 
is more formidable. We will therefore give an outline of a general algorithm. 
It requires a user-supplied subroutine to test if a given 4 E G is an element 
of K, and as a priori information a finite set Mmax c H'\{0} such that 
(H'\{O}) n (K - K') C Mmax. For each 4 E K' the algorithm will determine 
the set Me = (H\{O})f n (K - 4) by testing for all i E Mmax if 4 + ? E K. If 
ME is different from all previously found sets ME, , it is stored as a new set Ml. 
In this way the parameter L, as well as the ml, Ml, and K1, 1 = 1, ..., L, 
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are found. Let I denote a suitable integer array used to store for each E E K' 
the index / with 4 E KI. 

Algorithm 4.4 

Determine Mmax c H'\{O} such that (H'\{O}) n (K - K') C Mmax, 
L = 0; 

For all X E K' do; 
M= 0; 
For all t7 E Mmax do; 

If (4 +? te K) then M = M U {t7}; 
end; 
If ((L > 1) and (M = Ml for some I <L)) 

then I(4) = 1; 

else do;L=L+ 1; ML=M; mL= IMLI+ 1; I(4) =L; end; 
end; 

Having found the sets MI, we can solve the linear systems (12) for the 
coefficients IJ(V) . In general, we will have to choose N > m = maxl<l<L mI in 
order to avoid an overdetermined system, which might have no solution. 

For 4 E K' we can now find the index / with 4 E K1 by letting =I(4). 
The sets K1 are thus implicitly determined by the array I, since K1 = {E E K', 
I(4) = 1}. There is no need for an explicit representation. 

The next task is to give an algorithm to find for a given 4 E ZV the uniquely 
determined 4o E H such that 4 E XO+HI . We need to find integers i, min, i = 
1,...,s, suchthat 4 _W-T(l1,... ls)T=(mI...ms)T= o EH. Since 
W-T is upper triangular with diagonal elements N1, ... , Ns, the algorithm is 
straightforward. The kth equation reads Xk - Nklk - Ei=k+1 JIT1 = ik. With 

k= 'k - Zi=k+1 WkiiTj we have mk = mod(qk, Nk), and lk = (qk - mk)/Nk. 
Solving the system by backsubstitution leads to the following algorithm. 

Algorithm 4.5 

For k = s down to 1 do; 
S 

qk= k- Z kI 7/; 
i=k+1 

ink = mod(qk, Nk); 

k= (qk-mk)/Nk; 

end; 

Finally, we need an efficient algorithm for computing 

g(4 + H') = ' g(y)e-27ri(y o) dMHH(y) 

for all 4O E H; i.e., we need a Fast Fourier Transform for computing the Fourier 
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transform on H. Making use of Proposition 4.3, we obtain 

(4o + H1)= I 1 gE (y)e-27ri(y o) 
IHIYE 

1 N,-1 Ns-1 

N1 N2*.. Ns .. * g([WJ])e-27i([WJ],4o) 
Ji =0 A'=O 

where we have written J for (jl, js)T fe H. For 40 = (MI, .. , mS)T E H 
we see that 

([ WJ], 5 =E[ Mk [f Wklj] [?m jkN ik + ? Wkljl)] 
-k=i _1=1 -k=i~~~~~~1= 

Hence, computing k(4o) for o0 E H essentially amounts to performing an 
s-dimensional FFT, as the following algorithm shows. 

Algorithm 4.6 

For J = (jl, ..., js)T E H let G(j, * jS) = g(W )- 
For k = s down to 1 do; 

For all (jl, -... 1k-i, 0, mk+1, ..., ms)T E f compute 
G(i-, ..., jk-1; mk ..., mS) 

= e N2lrimk Z-1 WkIII 1 G(ji, ... j Ik; mk+1, ** ms)e- kJkk, 

mk =O,0..., Nk- I 

end; 

end; 

Clearly, the result G(mi, .5. , ms) is equal to k((mi, *.., ms)T). The inter- 
mediate results G(jl, . . k- 1; mik, ... , ms) can be computed by performing 
Pk = Hik Ni Fast Fourier Transforms of length Nk. Hence, the algorithm 
requires 

s ~~ ~~~~s s 

o (?PkNklogNk) =O(rjNiElogNk O(IH log IH) 
k=1 i=1 k=1 

operations. This concludes our description of the implementation. It remains 
to prove Proposition 4.3. We need the following technical lemma. 

Lemma 4.7. Let A be a nonsingular, triangular, real s x s matrix, and 

M= {x E Rs: Ixil < lAiil, i = 1, ..., s}. 

Then (AZs) n M = {O} . 
Proof. The assertion, namely, that z = 0 is the only integer vector satisfying 
the triangular system of inequalities I(Az)iI < IA ii i = 1, ... , s, is verified 
by solving this system using forward substitution or backsubstitution, respec- 
tively. 0 
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Proof of Proposition 4.3. It suffices to show that the two mappings are 1-1, since 
HI = IHI = 1/1 det(W)l = II'=1 Ni = IHI. If [Wx] = [Wy] for x, y E H, then 

x-y E W-'Zs. Onthe otherhand, if x+H' =y+H' for x,y E H, then 
X-Y E HI = W-TZs. Since Ni = (W-l),, = (W-T)ti, and Ixi-yi < NiN- 1, 
it follows from Lemma 4.7 that x = y in both cases. a 
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